
Hot cross builds
Cross-compilation in pkgsrc

Taylor R Campbell
riastradh@NetBSD.org

BSDCan 2024
Ottawa, Canada
May 31, 2024

Hot cross builds: cross-compilation in pkgsrc

https://www.NetBSD.org/gallery/presentations/

riastradh/bsdcan2024/pkgcross.pdf

https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2024/pkgcross.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2024/pkgcross.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2024/pkgcross.pdf

pkgsrc: portable package build system

▶ https://pkgsrc.org/

▶ Framework for building third-party software on Unix-like
operating systems.

▶ >26,000 packages.
▶ Actively supported platforms:

▶ NetBSD (first platform, based on mid-’90s FreeBSD ports)
▶ Solaris/SmartOS/illumos
▶ Linux
▶ macOS

▶ Other platforms with some support:
▶ FreeBSD/OpenBSD/DragonflyBSD/MidnightBSD
▶ MINIX 3
▶ SCO OpenServer/UnixWare
▶ HP-UX
▶ QNX

▶ Works unprivileged, so you can develop in your home directory
on a server you don’t administer.

Anatomy of a pkgsrc package

▶ DESCR – Human-readable description.
▶ Makefile – Machine-readable description.

▶ Tells where to download source code.
▶ Rules for how to configure, build, install.
▶ Etc.

▶ distinfo – Names, sizes, and hashes of source distribution.
Provides cryptographic integrity check.

▶ PLIST – Packing list: lists files installed by package.

pkgsrc example: security/nettle, part 1

$NetBSD: Makefile,v 1.31 2023/06/06 05:12:06 adam Exp $

DISTNAME= nettle-3.9.1

CATEGORIES= security

MASTER_SITES= http://www.lysator.liu.se/~nisse/archive/

MASTER_SITES+= ftp://ftp.lysator.liu.se/pub/security/lsh/

MAINTAINER= pkgsrc-users@NetBSD.org

HOMEPAGE= https://www.lysator.liu.se/~nisse/nettle/

COMMENT= Cryptographic library

LICENSE= gnu-lgpl-v2.1

USE_LANGUAGES= c c99

USE_LIBTOOL= yes

USE_TOOLS+= gm4 gmake

GNU_CONFIGURE= yes

SET_LIBDIR= yes

CONFIGURE_ARGS+= --disable-openssl

CONFIGURE_ARGS+= --disable-shared

pkgsrc example: security/nettle, part 2

.include "../../mk/bsd.prefs.mk"

.if ${USE_CROSS_COMPILE:tl} == "yes"

CONFIGURE_ENV+= CC_FOR_BUILD=${NATIVE_CC:Q}

.endif

INFO_FILES= yes

TEST_TARGET= check

PKGCONFIG_OVERRIDE= hogweed.pc.in

PKGCONFIG_OVERRIDE+= nettle.pc.in

BUILDLINK_API_DEPENDS.gmp+= gmp>=6.0

.include "../../devel/gmp/buildlink3.mk"

.include "../../mk/bsd.pkg.mk"

Building and installing a package1

which socat

socat not found

cd /usr/pkgsrc/net/socat

bmake install

=> Bootstrap dependency digest>=20211023: found digest-20220214

=> Fetching socat-1.8.0.0.tar.gz

...

=> Checksum SHA512 OK for socat-1.8.0.0.tar.gz

===> Installing dependencies for socat-1.8.0.0

...

=> Tool dependency checkperms>=1.1: found checkperms-1.12

=> Full dependency readline>=6.0: found readline-8.2nb2

...

=> Creating binary package .../socat-1.8.0.0.tgz

===> Installing binary package of socat-1.8.0.0

which socat

/usr/pkg/bin/socat

1On NetBSD, can use base system’s make, but everywhere else we
bootstrap devel/bmake for pkgsrc.

Binary packages: build once, install many times

▶ Building from source is necessary: verify source, audit
programs, modify, etc.

▶ Building from source is slow: run compiler on lots of source
code.

▶ Do it once, save the result, install binary packages after.

builder$ cd /home/builder/pkgsrc/net/socat

builder$ bmake package

client# PKG_PATH=/nfs/builder/pkgsrc/packages

client# export PKG_PATH

client# pkg_add socat

client# which socat

/usr/pkg/bin/socat

Binary package bulk builds

▶ NetBSD provides binary packages for NetBSD on many
architectures2.

▶ MNX Cloud provides binary packages for SmartOS, macOS,
Linux, and NetBSD/amd643.

▶ I build binary packages for my own machines.

▶ You can too!

2https://ftp.NetBSD.org/pub/pkgsrc/packages/NetBSD/
3https://pkgsrc.smartos.org/

Cross-compiling NetBSD

▶ Every NetBSD build is a cross-build.

▶ build.sh tools builds cross-toolchain.

▶ build.sh kernel=GENERIC distribution builds NetBSD
with the cross-toolchain.

Cross-compiling pkgsrc

▶ Use NetBSD build.sh tools distribution to get
started.4

▶ USE CROSS COMPILE=yes

▶ TOOLDIR=/usr/obj.evbppc/tooldir.NetBSD-10.0-amd64

▶ CROSS DESTDIR=/usr/obj.evbppc/destdir.evbppc

▶ CROSS MACHINE ARCH=powerpc, CROSS OPSYS=NetBSD, . . .

$ uname -m

amd64

$ cd ~/pkgsrc/net/socat

$ bmake package

...

$ cd ~/pkgsrc/packages.NetBSD-10.0-powerpc/All

$ pkg_info -Q MACHINE_ARCH socat-1.8.0.0.tgz

powerpc

4See doc/HOWTO-use-crosscompile for details.

Cross-build in homedir, install systemwide on target

▶ ./bootstrap --prefix /home/builder/pkg

--unprivileged ...

▶ set CROSS LOCALBASE=/usr/pkg in mk.conf

Toolchain wrappers

▶ pkgsrc creates symlink farms of toolchain wrappers for build:
▶ cc, ld, as, . . .
▶ powerpc--netbsd-gcc, powerpc--netbsd-ld,

powerpc--netbsd-as, . . .

▶ pkgsrc buildlink3 framework creates symlink farms of
dependent header files and libraries for build isolation.

▶ Wrappers transform toolchain arguments:
▶ add --sysroot=${CROSS DESTDIR}
▶ ensure -I (build-time include path) and -L (build-time library

path) point at buildlink3 symlink farms
▶ ensure -Wl,-R (run-time library path) points at installation

prefix without CROSS DESTDIR
▶ replace -ldl by appropriate platform-specific dlfcn.h option
▶ other package-specific argument transformations

Dependencies

▶ Some packages depend on other packages:
▶ tor program needs libevent library at run-time

▶ net/tor (run-) depends on devel/libevent

▶ Compiler needs event.h when building tor program at
compile-time

▶ net/tor also build-depends on devel/libevent

▶ Building libxcb requires running xsltproc to turn XML into
C header files at compile-time

▶ x11/libxcb tool-depends on textproc/xsltproc

▶ Also bootstrap-depends, like tool-depends but for parts of the pkgsrc

infrastructure.

Cross-compiling dependencies

▶ Use Intel Xeon to build x11/xterm, run on your
powerpc-based thin client.

▶ x11/xterm must be cross-built for MACHINE ARCH=powerpc.
▶ x11/xterm depends on x11/libxcb5.

▶ x11/libxcb must be cross-built for MACHINE ARCH=powerpc.

▶ x11/libxcb tool-depends on textproc/xsltproc.
▶ textproc/libxsltproc must be natively built for

MACHINE ARCH=x86 64.

5Via x11/libX11.

Build-depends vs tool-depends

▶ Both build-depends and tool-depends need to exist at
build-time.

▶ Build-depends are cross-built and installed into
/usr/obj.evbppc/destdir.evbppc/usr/pkg/...
▶ Example: C libraries, needed for linker.

▶ Tool-depends are natively built and installed into
/home/builder/pkg/... (${TOOLBASE})
▶ Example: xsltproc, cross-compiler.
▶ TARGET MACHINE ARCH, TARGET OPSYS, . . . , are set to

cross-compilation target.

Pointing builds at tool programs in dependencies

▶ Package uses glib-mkenums at build-time, how to use it?

TOOL_DEPENDS+= \

glib2-tools>=0:../../devel/glib2-tools

▶ GNU Autoconf:

CONFIGURE_ARGS+= \

GLIB_MKENUMS=${TOOLBASE:Q}/bin/glib-mkenums

▶ Meson:

MESON_CROSS_BINARIES+= glib-mkenums

MESON_CROSS_BINARY.glib-mkenums= \

${TOOLBASE}/bin/glib-mkenums

▶ Similarly: Use TOOL PYTHONBIN at build-time, but bake
PYTHONBIN into product for run-time Python.

Meson: pkgsrc creates cross config for you

[properties]

sys_root = ’/usr/obj.evbppc/destdir.evbppc’

[host_machine]

system = ’netbsd’

cpu_family = ’ppc’

cpu = ’powerpc’

endian = ’big’

[binaries]

glib-genmarshal = ’/home/builder/pkg/bin/glib-genmarshal’

glib-mkenums = ’/home/builder/pkg/bin/glib-mkenums’

Complications part 1: mixing up build-depends and
tool-depends

▶ Originally, pkgsrc had only build-depends—same as
tool-depends for native builds.
▶ x11/libxcb build-depended on textproc/xsltproc.

▶ Packages practically never need to set BUILD DEPENDS

directly—only via buildlink3.

▶ Solution: We mass-changed BUILD DEPENDS to
TOOL DEPENDS in package makefiles.

Complications part 2: package builds tools internally

▶ Some packages depend on external tools like x11/libxcb
depends on textproc/xsltproc.

▶ Others use internal tools, like security/nettle above.

▶ These try to use CC, which may be powerpc--netbsd-gcc
for cross-compilation.

▶ Can’t run the result on x86!

▶ Solution: Set CC FOR BUILD, maybe patch package to use it
instead.

.include "../../mk/bsd.prefs.mk"

.if ${USE_CROSS_COMPILE:tl} == "yes"

CONFIGURE_ENV+= CC_FOR_BUILD=${NATIVE_CC:Q}

.endif

Complications part 2′: package runs its own build product

▶ Some packages want to run a program they also install.
▶ x11/gtk2 calls gtk2-update-icon-cache.

▶ Need both native and cross versions of the program!

▶ Solution: Have package tool-depend on itself and pass path to
the natively built tool in the cross-build:

.include "../../mk/bsd.prefs.mk"

.if ${USE_CROSS_COMPILE:tl} == "yes"

TOOL_DEPENDS+= ${PKGNAME}:../../${PKGPATH}

UPDATE_ICON_CACHE= \

${TOOLBASE:Q}/bin/gtk2-update-icon-cache

CONFIGURE_ENV+= \

GTK2_UPDATE_ICON_CACHE=${UPDATE_ICON_CACHE}

.endif

Complications part 3: file existence tests

▶ Package wants to know whether /dev/urandom will exist
when run.

▶ Uses GNU Autoconf to ask whether /dev/urandom exists
now, when built.

▶ Build machine and target system may be different!

▶ But we know /dev/urandom will exist.

▶ Solution: Tell configure up front:

.include "../../mk/bsd.prefs.mk"

.if ${USE_CROSS_COMPILE:tl} == "yes"

CONFIGURE_ENV.NetBSD+= ac_cv_file__dev_urandom=yes

.endif

Complications part 3′: file existence tests in pkgsrc

▶ From x11/libdrm:

.if !exists(/usr/include/sys/atomic.h)

libdrm won’t find system atomic ops, use a package.

. include "../../devel/libatomic_ops/buildlink3.mk"

.endif

▶ Solution: Don’t look in /usr/include — look in
/usr/obj.evbppc/destdir.evbppc:

.include "../../mk/bsd.prefs.mk"

.if !exists(${_CROSS_DESTDIR}/usr/include/sys/atomic.h)

libdrm won’t find system atomic ops, use a package.

. include "../../devel/libatomic_ops/buildlink3.mk"

.endif

Complications part 4a: configure run-tests

▶ Similar to file existence tests.

▶ Program wants to know sizeof(long) at compile-time.

▶ Compiles a test program to print it, runs test program.

▶ Can’t do that if building on 64-bit amd64 for 32-bit powerpc!

▶ Solution: Binary search with compile-time assertions using
cross-compiler.

▶ (Yes, seriously! GNU Autoconf supports this with
AC CHECK SIZEOF.)

Complications part 4b: configure run-tests

▶ Some are harder to replace.

▶ Tell the answers up front, maybe with patches.

▶ From shells/zsh:

.include "../../mk/bsd.prefs.mk"

.if ${USE_CROSS_COMPILE:tl} == "yes"

.if ${OPSYS} == "NetBSD"

CONFIGURE_ENV+= zsh_cv_shared_environ=yes

CONFIGURE_ENV+= zsh_cv_shared_tgetent=yes

CONFIGURE_ENV+= zsh_cv_shared_tigetstr=yes

CONFIGURE_ENV+= zsh_cv_sys_dynamic_execsyms=yes

.endif

.endif

Complications part 5: problem children

▶ Some packages go to great effort to resist cross-compilation.
▶ Perl
▶ Python
▶ gobject-introspection

▶ Workaround: just build on your powerpc thin client and ship
binary packages back to x86 build machine to continue.

▶ (Solution: Chainsaws and rototillers. Fix the build systems!6)

6It can be done for Perl: OpenWrt does it. If you would like to help adapt
their approach to pkgsrc, talk to me!

Complications part 5: problem children

▶ Some packages go to great effort to resist cross-compilation.
▶ Perl
▶ Python
▶ gobject-introspection

▶ Workaround: just build on your powerpc thin client and ship
binary packages back to x86 build machine to continue.

▶ (Solution: Chainsaws and rototillers. Fix the build systems!6)

6It can be done for Perl: OpenWrt does it. If you would like to help adapt
their approach to pkgsrc, talk to me!

Complications part 5: problem children

▶ Some packages go to great effort to resist cross-compilation.
▶ Perl
▶ Python (much better since 3.10)
▶ gobject-introspection

▶ Workaround: just build on your powerpc thin client and ship
binary packages back to x86 build machine to continue.

▶ (Solution: Chainsaws and rototillers. Fix the build systems!6)

6It can be done for Perl: OpenWrt does it. If you would like to help adapt
their approach to pkgsrc, talk to me!

Related work

▶ OpenWrt: cross-compiled packages for Linux-based network
appliances.
▶ Linux-only.
▶ Not general-purpose package system.
▶ Much smaller than pkgsrc.

▶ distcc: run pkgsrc on thin client, run compiler remotely on
x86 build machine.
▶ Complex to set up: many moving parts (literally).
▶ Hard to parallelize.
▶ Compiler is a big part but not all of run-time—make(1) is a

big part of pkgsrc cost.

▶ FreeBSD ports: run native compiler in user-mode emulator.
▶ Many moving parts (figuratively).
▶ Emulators are slow.
▶ Less clean separation between host and target.

Future work

Future Past work

(since AsiaBSDcon 2015)

Future Past work

▶ Cross-OS compilation. Use SmartOS x86 cloud cluster to
build for MACHINE PLATFORM=NetBSD-7.0-powerpc.

▶ Set both CROSS MACHINE ARCH and CROSS OPSYS in mk.conf.
▶ Still to fix: USE TOOLS+= ...:run. pkgsrc doesn’t distinguish

host OS from target OS in USE TOOLS.

Future Past work

▶ Cross-OS compilation. Use SmartOS x86 cloud cluster to
build for MACHINE PLATFORM=NetBSD-7.0-powerpc.
▶ Set both CROSS MACHINE ARCH and CROSS OPSYS in mk.conf.

▶ Still to fix: USE TOOLS+= ...:run. pkgsrc doesn’t distinguish
host OS from target OS in USE TOOLS.

Future Past work

▶ Cross-OS compilation. Use SmartOS x86 cloud cluster to
build for MACHINE PLATFORM=NetBSD-7.0-powerpc.
▶ Set both CROSS MACHINE ARCH and CROSS OPSYS in mk.conf.
▶ Still to fix: USE TOOLS+= ...:run. pkgsrc doesn’t distinguish

host OS from target OS in USE TOOLS.

Future Past work

▶ User interface improvements.

▶ ▶ bmake package CROSS MACHINE ARCH=powerpc
▶ ▶ Bug fixed!

Future Past work

▶ User interface improvements.
▶ Can’t do bmake package MACHINE ARCH=powerpc for stupid

reasons.

▶ bmake package CROSS MACHINE ARCH=powerpc

▶ Setting up cross-compiling requires a manual step to work
around broken GNU libtool.

▶ Bug fixed!

Future Past work

▶ User interface improvements.
▶ Can’t do bmake package MACHINE ARCH=powerpc for stupid

reasons.
▶ bmake package CROSS MACHINE ARCH=powerpc

▶ Setting up cross-compiling requires a manual step to work
around broken GNU libtool.

▶ Bug fixed!

Future Past work

▶ Bulk builds.
▶ pbulk doesn’t understand build-depends vs tool-depends.

Future Past Future work

▶ Bulk builds.
▶ pbulk doesn’t understand build-depends vs tool-depends.

Future Past work

▶ Unprivileged builds for privileged installs.
▶ Native and cross packages must both point at /usr/pkg.

▶ LOCALBASE=/home/builder/pkg and
CROSS LOCALBASE=/usr/pkg in the same mk.conf.

▶ (Unprivileged builds for unprivileged installs work fine—not a
problem with privileges, just with different paths.)

▶ Some remaining issues: chown tool, suid executables.

Future Past work

▶ Unprivileged builds for privileged installs.
▶ Native and cross packages must both point at /usr/pkg.

▶ LOCALBASE=/home/builder/pkg and
CROSS LOCALBASE=/usr/pkg in the same mk.conf.

▶ (Unprivileged builds for unprivileged installs work fine—not a
problem with privileges, just with different paths.)

▶ Some remaining issues: chown tool, suid executables.

Future Past work

▶ Unprivileged builds for privileged installs.
▶ Native and cross packages must both point at /usr/pkg.

▶ LOCALBASE=/home/builder/pkg and
CROSS LOCALBASE=/usr/pkg in the same mk.conf.

▶ (Unprivileged builds for unprivileged installs work fine—not a
problem with privileges, just with different paths.)

▶ Some remaining issues: chown tool, suid executables.

Now get cross-building!

Questions?

