Table of Contents
Buildlink is a framework in pkgsrc that controls what headers and libraries are seen by a package's configure and build processes. This is implemented in a two step process:
Symlink headers and libraries for dependencies into
BUILDLINK_DIR
, which by default is a subdirectory
of WRKDIR
.
Create wrapper scripts that are used in place of the normal compiler
tools that translate -I${LOCALBASE}/include
and
-L${LOCALBASE}/lib
into references to
BUILDLINK_DIR
. The wrapper scripts also make
native compiler on some operating systems look like GCC, so that
packages that expect GCC won't require modifications to build with
those native compilers.
This normalizes the environment in which a package is built so that the
package may be built consistently despite what other software may be
installed. Please note that the normal system header and library paths,
e.g. /usr/include
,
/usr/lib
, etc., are always searched -- buildlink3 is
designed to insulate the package build from non-system-supplied
software.
The process of converting packages to use the buildlink3 framework (“bl3ifying”) is fairly straightforward. The things to keep in mind are:
Ensure that the build always calls the wrapper scripts
instead of the actual toolchain. Some packages are tricky,
and the only way to know for sure is the check
${WRKDIR}/.work.log
to see if the
wrappers are being invoked.
Don't override PREFIX
from within
the package Makefile, e.g. Java VMs, standalone shells,
etc., because the code to symlink files into
${BUILDLINK_DIR}
looks for files
relative to “pkg_info -qp pkgname
”.
Remember that only the
buildlink3.mk
files that you list in a
package's Makefile are added as dependencies for that package.
If a dependency on a particular package is required for its libraries and headers, then we replace:
DEPENDS+= foo>=1.1.0:../../category/foo
with
.include "../../category/foo/buildlink3.mk"
The buildlink3.mk files usually define the required dependencies. If you need a newer version of the dependency when using buildlink3.mk files, then you can define it in your Makefile; for example:
BUILDLINK_API_DEPENDS.foo+= foo>=1.1.0 .include "../../category/foo/buildlink3.mk"
There are several buildlink3.mk
files in pkgsrc/mk
that handle special package issues:
bdb.buildlink3.mk
chooses either
the native or a pkgsrc Berkeley DB implementation based on
the values of BDB_ACCEPTED
and
BDB_DEFAULT
.
curses.buildlink3.mk
: If the system
comes with neither Curses nor NCurses, this will take care
to install the devel/ncurses
package.
krb5.buildlink3.mk
uses the value
of KRB5_ACCEPTED
to choose between
adding a dependency on Heimdal or MIT-krb5 for packages that
require a Kerberos 5 implementation.
motif.buildlink3.mk
checks for a
system-provided Motif installation or adds a dependency on
x11/lesstif
or x11/motif
. The user can set
MOTIF_TYPE
to “dt”,
“lesstif” or “motif”
to choose which Motif version will be used.
readline.buildlink3.mk
checks for a
system-provided GNU readline or editline (libedit) installation,
or adds a dependency on devel/readline
,
devel/editline
. The user can set
READLINE_DEFAULT
to choose readline implementation.
If your package really needs GNU readline library, its Makefile
should include devel/readline/buildlink3.mk
instead of readline.buildlink3.mk
.
oss.buildlink3.mk
defines several
variables that may be used by packages that use the
Open Sound System (OSS) API.
pgsql.buildlink3.mk
will accept
any of the Postgres versions in the variable
PGSQL_VERSIONS_ACCEPTED
and default to
the version PGSQL_VERSION_DEFAULT
. See
the file for more information.
pthread.buildlink3.mk
uses the value of
PTHREAD_OPTS
and checks for native pthreads or adds
a dependency on devel/pth
as needed.
xaw.buildlink3.mk
uses the value of
XAW_TYPE
to choose a particular Athena widgets
library.
The comments in those buildlink3.mk
files provide a more complete
description of how to use them properly.
A package's buildlink3.mk
file is
included by Makefiles to indicate the need to compile and link
against header files and libraries provided by the package. A
buildlink3.mk
file should always provide
enough information to add the correct type of dependency
relationship and include any other
buildlink3.mk
files that it needs to find
headers and libraries that it needs in turn.
To generate an initial buildlink3.mk
file for further editing, Rene Hexel's pkgtools/createbuildlink
package is highly recommended. For most packages, the following
command will generate a good starting point for
buildlink3.mk
files:
%
cd pkgsrc/
category
/pkgdir
%
createbuildlink >buildlink3.mk
The following real-life example
buildlink3.mk
is taken
from pkgsrc/graphics/tiff
:
BUILDLINK_TREE+= tiff .if !defined(TIFF_BUILDLINK3_MK) TIFF_BUILDLINK3_MK:= BUILDLINK_API_DEPENDS.tiff+= tiff>=3.6.1 BUILDLINK_ABI_DEPENDS.tiff+= tiff>=3.7.2nb1 BUILDLINK_PKGSRCDIR.tiff?= ../../graphics/tiff .include "../../devel/zlib/buildlink3.mk" .include "../../graphics/jpeg/buildlink3.mk" .endif # TIFF_BUILDLINK3_MK BUILDLINK_TREE+= -tiff
The header and footer manipulate
BUILDLINK_TREE
, which is common across all
buildlink3.mk
files and is used to track
the dependency tree.
The main section is protected from multiple inclusion
and controls how the dependency on pkg
is
added. Several important variables are set in the section:
BUILDLINK_API_DEPENDS.
is the dependency version recorded in the installed
package; this should always be set using
+= to ensure that
we're appending to any pre-existing list of values. This
variable should be set to the last version of the
package that had an backwards-incompatible API change.
pkg
BUILDLINK_PKGSRCDIR.
is the location of the pkg
pkg
pkgsrc directory.
BUILDLINK_DEPMETHOD.
(not shown above) controls whether we use
pkg
BUILD_DEPENDS
or
DEPENDS
to add the dependency on
pkg
. The build dependency is
selected by setting
BUILDLINK_DEPMETHOD.
to “build”. By default, the full dependency is
used.pkg
BUILDLINK_INCDIRS.
and
pkg
BUILDLINK_LIBDIRS.
(not shown above) are lists of subdirectories of
pkg
${BUILDLINK_PREFIX.
to add to the header and library search paths. These
default to “include” and “lib”
respectively.pkg
}
BUILDLINK_CPPFLAGS.
(not shown above) is the list of preprocessor flags to add
to pkg
CPPFLAGS
, which are passed on to the
configure and build phases. The “-I” option
should be avoided and instead be handled using
BUILDLINK_INCDIRS.
as
above.pkg
The following variables are all optionally defined within
this second section (protected against multiple inclusion) and
control which package files are symlinked into
${BUILDLINK_DIR}
and how their names are
transformed during the symlinking:
BUILDLINK_FILES.
(not shown above) is a shell glob pattern relative to
pkg
${BUILDLINK_PREFIX.
to be symlinked into
pkg
}${BUILDLINK_DIR}
,
e.g. include/*.h
.
BUILDLINK_FILES_CMD.
(not shown above) is a shell pipeline that
outputs to stdout a list of files relative to
pkg
${BUILDLINK_PREFIX.
.
The resulting files are to be symlinked
into pkg
}${BUILDLINK_DIR}
. By default,
this takes the +CONTENTS
of a
pkg
and filters it through
${BUILDLINK_CONTENTS_FILTER.
.pkg
}
BUILDLINK_CONTENTS_FILTER.
(not shown above) is a filter command that filters
pkg
+CONTENTS
input into a list of files
relative to
${BUILDLINK_PREFIX.
on stdout. By default,
pkg
}BUILDLINK_CONTENTS_FILTER.
outputs the contents of the pkg
include
and lib
directories in the package
+CONTENTS
.
BUILDLINK_FNAME_TRANSFORM.
(not shown above) is a list of sed arguments used to
transform the name of the source filename into a
destination filename, e.g. -e
"s|/curses.h|/ncurses.h|g".pkg
This section can additionally include any
buildlink3.mk
needed for
pkg
's library dependencies.
Including these buildlink3.mk
files
means that the headers and libraries for these
dependencies are also symlinked into
${BUILDLINK_DIR}
whenever the pkg
buildlink3.mk
file is included. Dependencies are only added for directly
include buildlink3.mk
files.
When providing a buildlink3.mk
and
including other buildlink3.mk
files in it,
please only add necessary ones, i.e., those whose libraries or
header files are automatically exposed when the package is
use.
In particular, if only an executable
(bin/foo
) is linked against a library, that
library does not need to be propagated in the
buildlink3.mk
file.
The following steps should help you decide if a
buildlink3.mk
file needs to be included:
Look at the installed header files: What headers do they include? The packages providing these files must be buildlinked.
Run ldd
on all installed
libraries and look against what other libraries they link.
Some of the packages providing these probably need to be
buildlinked; however, it's not automatic, since e.g. GTK on
some systems pulls in the X libraries, so they will show up in
the ldd
output, while on others (like OS
X) it won't. ldd
output can thus only be
used as a hint.
Both variables set lower bounds for a version of this package. The two variables differ in that one describes source compatibility (API) and the other binary compatibility (ABI). The difference is that a change in the API breaks compilation of programs while changes in the ABI stop compiled programs from running.
The
BUILDLINK_API_DEPENDS.
variable in a pkg
buildlink3.mk
should be
changed very rarely. (One possible scenario: If all packages
using this package need a higher version than defined in the
buildlink3.mk
,
BUILDLINK_API_DEPENDS.
could be updated to that higher version.)pkg
On the other hand, changes to
BUILDLINK_ABI_DEPENDS.
are more common. The variable will need to be updated every
time the major version of one of its shared libraries is changed,
or any other change where a binary built against the previous
version of the package will not run against the new version any
longer.pkg
In such a case, the package's
BUILDLINK_ABI_DEPENDS.
must be increased to require the new package version. Then the
pkg
PKGREVISION
of all packages
foo
that depend on this package need
to be increased, and if they have
buildlink3.mk
files,
BUILDLINK_ABI_DEPENDS.
in their foo
buildlink3.mk
files must be
increased to the new version as well. This is required so that a
package will pull in the versions of the packages that use the
new ABI and that the packages' PKGREVISION
s
uniquely identify the packages built against the new ABI. The
pkgtools/revbump
package can
help with these updates.
See Section 21.1.5, “Handling dependencies” for more information
about dependencies on other packages, including the
BUILDLINK_API_DEPENDS
definitions.
Please take careful consideration before adjusting
BUILDLINK_API_DEPENDS.
or
pkg
BUILDLINK_ABI_DEPENDS.
in a pkg
buildlink3.mk
file as we don't want to
cause unneeded package deletions and rebuilds. In many cases,
new versions of packages work just fine with older
dependencies.
Also, it is not needed to set
BUILDLINK_ABI_DEPENDS.
when it is identical to
pkg
BUILDLINK_API_DEPENDS.
.pkg
Note there is also the distinction that users are able to disable
enforcement of ABI dependencies using the USE_ABI_DEPENDS
variable, but there is no equivalent option for API dependencies.
Some packages in pkgsrc install headers and libraries that
coincide with headers and libraries present in the base system.
Aside from a buildlink3.mk
file, these
packages should also include a builtin.mk
file that includes the necessary checks to decide whether using
the built-in software or the pkgsrc software is
appropriate.
The only requirements of a builtin.mk file for
pkg
are:
It should set
USE_BUILTIN.
to either “yes” or “no”
after it is included.pkg
It should not override any
USE_BUILTIN.
which is already set before the
pkg
builtin.mk
file is included.
It should be written to allow multiple inclusion. This
is very important and takes careful
attention to Makefile
coding.
The following is the recommended template for builtin.mk files:
.if !defined(IS_BUILTIN.foo) # # IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo" # genuinely exists in the system or not. # IS_BUILTIN.foo?= no # BUILTIN_PKG.foo should be set here if "foo" is built-in and its package # version can be determined. # . if !empty(IS_BUILTIN.foo:M[yY][eE][sS]) BUILTIN_PKG.foo?= foo-1.0 . endif .endif # IS_BUILTIN.foo .if !defined(USE_BUILTIN.foo) USE_BUILTIN.foo?= ${IS_BUILTIN.foo} . if defined(BUILTIN_PKG.foo) . for _depend_ in ${BUILDLINK_API_DEPENDS.foo} . if !empty(USE_BUILTIN.foo:M[yY][eE][sS]) USE_BUILTIN.foo!= \ ${PKG_ADMIN} pmatch '${_depend_}' ${BUILTIN_PKG.foo} \ && ${ECHO} "yes" || ${ECHO} "no" . endif . endfor . endif .endif # USE_BUILTIN.foo CHECK_BUILTIN.foo?= no .if !empty(CHECK_BUILTIN.foo:M[nN][oO]) # # Here we place code that depends on whether USE_BUILTIN.foo is set to # "yes" or "no". # .endif # CHECK_BUILTIN.foo
The first section sets
IS_BUILTIN.
depending on if pkg
pkg
really exists
in the base system. This should not be a base system software
with similar functionality to pkg
;
it should only be “yes” if the actual package is
included as part of the base system. This variable is only
used internally within the builtin.mk
file.
The second section sets
BUILTIN_PKG.
to the version of pkg
pkg
in the base
system if it exists (if
IS_BUILTIN.
is “yes”). This variable is only used internally
within the pkg
builtin.mk
file.
The third section sets
USE_BUILTIN.
and is required in all
pkg
builtin.mk
files. The code in this
section must make the determination whether the built-in
software is adequate to satisfy the dependencies listed in
BUILDLINK_API_DEPENDS.
.
This is typically done by comparing
pkg
BUILTIN_PKG.
against each of the dependencies in
pkg
BUILDLINK_API_DEPENDS.
.
pkg
USE_BUILTIN.
must be set to the correct value by the
end of the pkg
builtin.mk
file. Note that
USE_BUILTIN.
may be “yes” even if
pkg
IS_BUILTIN.
is “no” because we may make the determination
that the built-in version of the software is similar enough to
be used as a replacement.pkg
The last section is guarded by
CHECK_BUILTIN.
,
and includes code that uses the value of
pkg
USE_BUILTIN.
set in the previous section. This typically includes, e.g.,
adding additional dependency restrictions and listing additional
files to symlink into pkg
${BUILDLINK_DIR}
(via
BUILDLINK_FILES.
).pkg